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C. How to get Riemannian or pseudo-Riemannian metrics.
(1) On one coordinate patch or on a Euclidean space, we have a system
of vector fields 81, A Bn valid everywhere. It suffices to define the
functions gij(x). We could, for example, set gij(x) =61J_, making the
vector fields {83‘.} orthonormal at each point.
(2) On a manifold, we can use (1) to construct metrics on coordinate
patches. Then we can use "pa.rtitions of unity" to combine these metrics
into a metric on the whole manifold. This is the method usually used to
show that any manifold has a metric.
(3) The usual way in which Riemannian metrics arise in practice is as
follows: Suppose N is a space (often a Euclidean space) which already
has a Riemannian metric h. Suppose we have a manifold M and a C
function f:M— N which is an immersion (that is, the Jacobian matrix
of f is non-singular at every point of M). Then we define a metric

oJa
o

f (h) =g on M by letting gX(X,Y) f( )( (X),£,(Y)) for X,Ye T.M

In local coordinates, this goes as follows: Let XypewesX be local
coordinates on M, and IAERRRE ¥ be local coordinates on N. Then f
is given by y; = f.(x $N 8 i ,xm) (i=1,...,n). Let h be given by hij(Y)'
Then g = £ ‘() is given by

f 8f£
gyted = gi by, ¢ (£)) " o,
> b () i/
_ X .
5121 k, £ x. ij

£ (h) is called the pullback of h by f.
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II (§49). Covariant Differentiation

A. Motivation. We want some sort of directional derivative on a

manifold. Will LX do? No! Why?

(1) A directional derivative in the direction X should depend only on the

value of X at the point in question. But Lf Y = £ LY - (Y- £)X,

showing that L_Y depends on how X is changing at the point in question

x .
(note the term (Y- £)X).
(2) We will be interested in NeWton's laws, and therefore in acceleration
as we move alc;ng a curve; i. e., the derivative of the velocity vector in
the direction of the velocity vector. But the Lie derivative LXX is
always zero. Thus we cannot use LX to discuss acceleration.

B. The abstract covariant derivative.
(1) Definition: An (affine) connection v on M is a rule which assigns

to two smooth vector fields X and Y on M another smooth vector field

V.Y on M, called the covariant derivative of Y in the direction X

X
(with respect to ¢ ), obeying

(a) ¥

= + : = .
x1+x Y Vx Y Vi Y and VfXY f VXY 9

2 1 2

(b) Vo (Y, #Y)= V¥ + V¥, and Vy(fY) = (X-OY + £V, ¥

for fe g(M), Xi’ Yi vector fields on M.
(2) If VXY is to fulfill our expectations of what a directional derivative

ought to be, then the following proposition should hold:
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Proposition. For any point p on M, (VXY) depends only on

Xp and on the behavior of Y in a neighborhood of p (actually on the

"germ'" of Y at p).

Proof. If Y=Y' in a neighborhood U of p, then we take a

"bump" function f which is one outside of U and zero on some neigh-

borhood VC U of p.

] ==
o -+ i F .
(- T; J

Then Y - Y'=£.(Y-Y"'), so that
(T(T =¥ = [9yle (¥ - 2]

= (X0 (YY) +£(p) V(Y- ¥)

%

P
= 0-(Y-Y) +0v_(Y-Y") = o0,
P P

<t

= 1

so (VXY)p (VXY )p .
If X =X! : X =

5 g i then we can write X -X zfipi’ where f ¢ _7(1\/[)

and Pi are vector fields on M, with fi(p) = 0. (Details left to the

reader.) Then
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(VXY)p -(VX'Y)P = (VX--X'Y)p = (V Y)p

[}
i
T
q
o
=
1]
o
O
=
@)

(3) By the prdposition above, VXY is well-defined at a point, even if
X and Y are defined only in a neighborhood of that point (rather than
on the whole manifold). Thus the following definition makes sense:
For {xl, & 5w xn} a local coordinate system on M, ai = B/Bxi as
before, we define n3 smooth functions I' (x) (i,j,k=1,...,n) on

|
the coordinate patch by

k
(9, = T (x) 9, (x).
%000, = 3T, ) 0, (x)

The functions l"ilj are called the Christoffel symbols of the connection

w lcul th X = 9., Y = x)a, ,
e can calculate that for z ai(x) o z bJ(x) ;
ob. k
VxY=Zai[Z B T .zbjrij 3. 1.
i J i ik
(4) Examples:
n k
(a) In IR, with the usual coordinate system, let l"i. be identically
zero. Then we get the usual directional derivative of vector fields.
(b) If M is embedded in N (particularly ]Rn), and if N has a
N
connection v and a Riemannian metric, then we can use these to de-
fine a connection on M as follows: For pe M and X,Y vector fields

defined on M 1in a neighborhood of p, extend X and Y to vector fields
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M
defined on N in a neighborhood of p. Define y by setting
M N
(VX Y)p = projM((VXY)p), where proj, ~denotes the perpendicular pro-
- M
jection of TPN onto TPM, It is easy to verify that v satisfies the
ol :

definition of a connection. (VX Y)[J is independent of the extensions of

X and Y to N, and ...)

C. Covariant derivative of a vector field along a curve.
(1) Define a vector field X along a curve c:I - M to be a map X

such that

] m—————et M commutes.
Note difficulties involved in extending X to M when ¢ crosses
itself, has cusps, stationary points, etc. An example of a vector field

along a curve c¢ is the velocity c .

(2) For X a vector field along c, define the covariant derivative of X

along c, véX, by

(a) where c(t) # 0, extend X to a neighborhood of c(t) in M, and
let the covariant derivative along the curve just be the ordinary covariant
derivative in M, Vé(X). We show that the result is independent of the

extension by showing that
’ : k
= = 'Fe + Vs ds :
v.Y) = SEy)p, > &¥; Ty B s
k I,J:k
h Y = E .
where yiai

(b) Where ¢ =0, let V_ (Y)=0.
C
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D. Parallel translation
(1) For M a manifold with connection Vv . ¢ a smooth curve in M

and X a vector field along c, we say that X is parallel along c if

V‘éx = 0 holds everywhere on c.

In local coordinates ITRRERE S let ¢ be given by Ci(t)’ —_ cn(t);
let X be given by X(t) = =, Xi(t)ai(c(t)). Then the equation VéX =0

is equivalent to

X, i " .
- (t) + % l"k1 (c(t)) T 'Xl(t) = 0, (1= 15 ..4.sm)

This is a system of n linear differential equations in n variables. For

an initial value to and an arbitrarily chosen vector X(to) in Tc( M,

t,)

there is a unique vector field X(t) along ¢ which coincides with X(to)

at c(to). The value of this vector field at C(ti) is said to be the parallel

translation of X(to) along c to c(ti).
(2) Note that the parallel translation along c from c(a) to c(b) gives
an invertible linear map of Tc(a)M to Tc(b)M' This linear map depends
very heavily on c (unless the "curvature" of the connection is zero).
(3) Relation of parallel translation and v.

Proposition. Let Xe TpM, Y be a vector field defined in some

neighborhood of p. Take any curve c such that c(O) = X. Then
o
( Y(c(t))) - Y
v), = tm g, ¥(e®)) - ¥(p)

t—*>oo t

(v

X

o
(where ”c ; denotes the parallel translation along ¢ from c(t) to

?

c(0) = p.)
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Proof. Let {Zi’ 72 Zn} be a basis of TPM, Extend Zi by
parallel translation to a vector field along c. Thus, for each t,
{Zi(t), 2® 23 Zn(t)} is a basis for Tc(t)M'

Write Y(c(t)) = S yi(t)Zi(t). As parallel translation is linear

and the Zi's are parallel along c, we get that

IIi . Yle®) = >3 vy, (0Z,(0).

?

Taking the difference and the limit, we find that the right hand side of

our conclusion becomes

y.(t) - v.(0) o
> Gim ————)Z(0) = > (c-y,),240) .

1

But, as v, Zi = 0, this equals the left hand side of our conclusion:
¢

VY= v.(3 y.(0z (1)

u

> (Ey)z(0) + 2 y(v,.2Z)

> (e-y) 2(t)+0 . Q.E.D.

(4) Note the similarity of the above proposition to the proposition giving
the Lie derivative 13( in terms of the flow of X, As a parallel to

Willmore's theorem, we have:
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Theorem. We can extend Vx to a unique linear map of the various

tensor bundles

Vi T, (M) - T, (M)

X
such that
(1) Vyf = X-f for fe P (M),

(2) For Y a vector field on M, VXY is the given covariant

derivative.
i
(3) Vy 6 = 0, where & = lz e ®ei :
(4) Vx is a derivation of the tensor algebra;
1y = 1 ' 1
VRT®T) = @y N® + 1@ ()

Further, we can also extend the notion of parallel translation along c to

b r r
”c,a :‘ Ts (M)c(a) Iy (M)c(b)

and, for any tensor field T, VT is given by a limit, as in the previous
proposition.,

Example: Using (3) and (4), we can find

Jy _ J k
VB/Bxi (dx’) = -%rik dx

III (§50) Nice Covariant Derivatives.

A. Torsion
(1) Symmetry. Suppose S;]RZ—*M is a smooth map. (Call S a

"parametrized surface".) Then we get two vector fields on S,

35 )
Sx = B and Sy—' ay ’
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We can form VS Sy‘ and Vs Sx . (These correspond to covariant
x ,

derivatives along the curves S(t, yo) and S('xo, t) respectively.) In

general, it is not true that

v.S = V_. S

It this condition is satisfied for all parametrized surfaces S, then we

say that the connection v is torison free or symmetric. (Note: this

‘ 2
condition does not correspond to the property 32/8:;331' = 87 /8ydx in
ordinary Euclidean space. That property corresponds to the "curvature”

of the connection being zero. )

(2) The torsion tensor.
For vector fields X,Y on M, define
Tor(X,Y) = VXY . VYX = %, Y.
Show
(a) Tor is #(M)-linear in X and Y,
(b) Follows from (a) that Tor(X,Y)p depends only on Xp and Yp,
and bilinearly on these.

(c) (b) means that Tor is a tensor, the torsion tensor of the

connectiony . (Actually, more properly speaking, the torsion tensor

2
is the tensor T of type (1) given by
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(X,Y,0) 2 oTor(X,Y))
for X,Y vector fields and w a i-form.)

(d) Calculate local form: If we let
k
= 0
Tor(ai, 8J.) kE Torij Kk

then we find

Tor_l.c = 1".1? - I'.I.c
ij ij ji

(3) Relation of Tor and symmetry.

Theorem. Tor =0 if and only if VS Sy = VS Sx for all para-
o y

metrized surfaces.

Proof. (<=). For any two vectors X and Y at p, we can choose

S so that (S =X and (Sy)p = Y It is easy to calculate that, because

J,

S, and S both come from §, [Sx’sy] = 0. (The calculation reduces to

2 2
) 9 2
mx—' = W on IR”.) Then
VSXSY = VSYSY implies VXY - VYX =0 and [X,Y]=0,

so Tor(X,Y) =0 forall X,Y.

(== ). Tor(Sx, Sy) = 0. But, again [Sx, Sy] = 0. Q.E.D.

B. Invariance of g under parallel translation.
(1) Definition. If M has both a connection ¥ and a Riemanni:atn or
pseudo-Riemannian metric g(X,Y) = (X,Y), then it will be nice if

parallel translation preserves inner products; i.e., whenever X(t)

and Y(t) are parallel along c, then (X(t),Y(t)) is independent of t.
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(2). Proposition. (1) above holds if and only if the following condition

holds: if A and B are vector fields on M, then

X-(A,B) = (V4 A,B) + (A,V

Proof. (=>) Take ¢ a curve with c(0) = X. Take an orthonormal

<B)-

basis Y,..., Y oat c(0). Extend these by parallel translation along c.
By our hypothesis (1) above, the vectors Yi(t)’ 218§ Yn(t) form an

orthonormal basis in Tc(t)M for each t.

We can write

Ale(t) = 2E()Y (1),
Ble(t) = 22 g,(t)Y,(t).
Then
(Ale(t), Ble(t) = S £,(t)g(t),
and

X-(A,8) = = (Ale(r), B(e(t) = = (D,(0) (1))

2 (X-f)g, + £,(X-g)]

i

(V4A,B) + (A,V,B).

(<==) is even easier. If A and B are parallel along ¢, then
V(_:A = VCB = 0, so the derivative of (A, B) along c is

¢.(A,B)

(V.A,B) + (A, V, B).
¢ ¢

0+0=0.

Therefore (A, B) is constant along c. Q.E.D.
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Note: If we regard(, ) as a tensor ge TOZ(M), then the conditionrthat
parallel translation preserve inner products is equivalent to V8= 0

for all vector fields X on M. Here, VX is as described in the theorem
at the top of page 96.

M: The theorem above also holds for pseudo-Riemannian metri;:s.

The modification of the proof is left to the reader.

(3)‘ Main theorem (Holds for pseudo-Riemannian metrics).

Theorem. Given M with a pseudo-Riemannian metric ( , ), there
is a unique connection y on M satisfying

(1) Tor=0

(2) parallel translation preserves inner products.

Proof. Uniqueness: we have from (2) that

X-(Y,2) = (VXY, Z) + (Y,VXZ).
Using (1), this becomes
X(Y,2) = (v, Y,2) + (Y,v,X) + (v, [X, z]).

Cyclically permuting X,Y and Z, we get two other equations. Solving

for (VXY,Z) and eliminating the terms involving V. Z and VZX

Y
(using the symmetry of ( , )) we get
2V, Y, 2) = X (¥,2) + Y (Z,X) - 2(X,Y) - (Y,[X, Z])
-(z,[Y,X]) + (X,[z,Y]).

As (, ) is nonsingular, this shows that VXY is determined.
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Conversely, if we define VXY by using this formula, then we find

that condition (1) and cendition (2) of the theorem are satisfied. Q.E.D.

(4) Local form of the above result

In local coordinates, using the fact that [Bi, Bj] =0 we get
k Lk
= + - 5
2T %:[ai(gii) 9.(g;1) - 8,(g;))]e

, and (gi k) is the inverse matrix of (g..).

where 0, = i
i axi 1)

C. Example. Suppose N (especially IRn) is a manifold with a
metric g and the unique corresponding covariant derivative vy . Let
M be embedded in N. M inherits a metric h-(see I.C. 3) and a con-
nection ¢ (see II. B. 4). Claim that Vv  is the unique connection
on M corresponding to the metric h.

Proof. (1) Tor is zero: if S is a surface in M, then it is a sur-

N
face in N. Then V_, S = V_ S_, so their projections VM S and
SX y SY 5 SX y

M ;
VS SX into M are equal.

¥y
(2) Show

M

M
< Y,Zz)+(Y,V, Z) for X,Y,Z tangent fields

X-(Y,Z) =(V <

to M. But theleft hand side is independent of whether we look in M

N

M
or in N. Theequation holds in N. VXY differs from vV« Y bya

M N
vector perpendicular to M, so ( Vs T, 2= | VXY, Z), and so on. Q.E.D.
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IV. (§51) Lagrange's Equations.

Suppose N particles move in space, subject to certain constraints.
For each allowed configuration of the N particles, we get a point in
3N-space. We assume that the set of allowed configurations is a sub-

3N

manifold M of IR of dimension n and that arbitrary motions on the

submanifolds are possible. This is what it means for the constraints to
be "holomonic".

Put the metric on ]R3N given by

N
> m,(dx’ + dy2 + dz),
Y 1 1 1 b

h

. g .th ,
where mi is the mass and (xi, Yi’ Zi) the coordinates of the 1t particle.

Let w denote the {1-form on- IR3N given by
w = %F.dxi+F.dyi+F. dzi,
= i iy iz
where Fix is the force on the ith particle in the x-direction, etc.

*
3N, Let g=f ‘(w), and let

f
Now, we have the inclusion M ~—®R
v be the unique nice connection on M associated with g. Now, g
%
produces an isomorphism of T ,M with T M. Let Xw be the vector

field corresponding to w,. under this isomorphism. Then the equations

Q

of motion may be expressed for a path ¢ in M as

That is, given an initial position c(to) and an initial velocity é(t ) the
o
system follows the unique path c(t) satisfying this equation for these initial

conditions.



-101-

for each k, such that ds(w) + sd(w) = w for every form w. If then we
have an w with dw = 0, it will follow that w = d(sw), showing that w
is exact, We will also let V denote the tangent space (at any point)
of U

A k-form w may be regarded as a smooth map from U to
Ak(V*), the space of alternating k~tensors on V., Thus for each ue U,

wu is an alternating k-tensor: vl, BEEN € V implies that

:vk

wu(vl,..,,,vk) ER . Write w(u.v ,,vk) =wu(v1,“.,vk); then w

lgoﬂ

is a function smooth in the first argument, and linear and alternating
in the last k arguments,
Suppose f is a smooth real-valued function on U, We define

a new function Df: UX V —#R by letting Df(u,v) = £ duf, v> ; that

d(fe¥)
dt lt=0

Hence Df is nothing more than the directional derivative of f in the

is, Df(u,v) = where v is the path defined by ¥ (t) = utv.
direction v at the point u., Now if f happens to be a function of other
variables as well, we can still form Df by ignoring those other variables
as we take the derivative, and then putting them back: thus if

f= f(u,wl; ..,Wr),

Di(u, v, w;,.0uyw ) = (d/dt) f(uttv, wy, ..., w )

1 rt=0

Notice that Df is a linear function of v: if also f happens to be a linear

function (in u), Df(u,v) = f(v).
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If w is a k-form, redefine the (k+l)-form dw by

k

(dw)(u,vo,...,vk)= 2 (-l)I(Dw)(u,v ,vo,vl,...,gl,...,vk).
£2=0

(Here the A over v, means that v, is omitted.) We claim this dw

is the same as the dw defined previously. This is checked by showing

that this dw is linear and alternating in the vq, .ee,V, , and has the

k
same values on the basis elements of VXV X,,, XV as the old dw,
The linearity is clear, given our comments regarding the operator Dj;
dw is alternating since computation shows that it vanishes when any two
successive arguments are equal. Suppose now w is a one-form ;

w = z: widq:.L , where {qi} are coordinates on M and {ei} are the

corresponding basis elements of V = Tu(M)' Then wi(u) = w(u, ei). By

our old definition

ow, ow, " ; g g :
dw = 2 ‘ ( Lo = )dq /\dq‘] = E dw(u, e, e.)dqlr\dq‘] 8
TE i j < i’
i<j 9q 9q i<

To prove that the two definitions coincide for one-forms it will thus
suffice to show that dw(u, e ej) is the same as in the new definition.
But in the new definition

dw(u, e ej) = Duw(u, e ej) - Dw(u, ej, ei),

and _
Df(u, ei) = 'af/aqi .
Hence
dw (u, e.) dw(u, e,) dw.. dw .
dw(u, ei,e,) = : . . . = Jl - —
g 9q g 8q 8¢’
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which is what we were trying to prove. Similar techniques show that
the two definitions are the same for general k-forms.

We are now ready to define the map s which makes a (p-1)-
form out of every p-form. If w is a k-form, let

1 P
k-1
(sw)(u;vl, . 5 ’Vk-l) =J;) t w(tu;u,Vl. i & ’Vk-l) dt.

Here we consider the open set U as part of the vector space V = Rn,
which has also been identified with Tp(U). Thus on the right-hand side
of the equation, the second argument, u ¢ U, is viewed as a vector

of V. But since U is an open ball, tu, the first argument, is in U
for all t 7&’ 1. It is now easy to check that sw is a (k-1)-form -:- linear,

alternating, and smooth as a function of u.

We now take a k-form o and show, at last, that ds(w) + sd(w) = w.

First,

. k-1

D(sco)(u,v,vl, ou ’vk-l) =J'0 D[t “w(tu,v, W, Visees ,vk_l)]dt

. k
(since all functions involved = J t Dw(tu, v, u, MEREE ’Vk-l) dt
are smooth and bounded) 0

1
k-1
+f t w(tu,v,vl,...,vk_l)dt‘

0
The latter term appears as it does since w is linear in the third variable,

and it was proved that if f is linear, Df(u,v) = f(v). Now
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k
2-1
d(sw)(usvlo-o-vvk)— IE:; ('1) D(Sw)(u V Vl! ."41“.."’1()
k 1
= Z (-l)l-l[f tka(tu Y, oMy Vs snan oWy pens g V) dt
J4 1 y k
£1=1 0
1
+f tk lw(tu, lgqcov 90 0 ,v )dt]l
0
and
rl K
s(dw)(u,vl,... ’vk) =~0 t dw(tu,u,vl,... ,vk)dt

k
= E tDwtu VI’u VI,--A,‘A’ .no-,vk)dt
Y0 £=1

i k
+| t Do(tu,u,v,,...,v, )dt.
0 1 k

When we add d(sw) and s(dw), the first terms of each expression cancel;

also,
k 1
k-1
Z f w(tu, 1: sy l:oo- ’Vk)dt
£=1 0
I 4 1
= 2(-1)1-1f (-1)!-1 tk-lw(tu,v sun ap¥ ) dt since w is alternating
1 k
k=1 0
1
= k[ tk-lw(tu,v yeee sV, )dt .
1 k
0
Hence

. 1

Kk _ .

(sdw+dsw)(u,v1,... ,Vk) =j‘ [t Do(tu,u,v,s...,v, ) +kt:k 1(.u(tu,v seen 3 ¥, ) ]dE
0 1 k 1 k

1
e .k
—fo e [t w(tu,vl,... ,vk)] dt
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; ' ; 3N 5
Proof. First look at unconstrained motion in IR™ . It is easy to

k
see that the metric h gives us the usual connection ¢ (I',, = 0) on

1
N
IR3 . Now specify the path ¢ by giving coordinates cj ;

e, 3¢. for
x Jy Jz

the jth particle, j=1,...,n. The definition of the covariant derivative

along c then gives 2

d e, d2c d"c

R jx 9 jv 9 jz )

v.e = > + + )
¢ 3 dtz ij dtz ayj 2 0z,

R
Further, if Xm is the vector field which corresponds to the form w by

way of h then

XR._. E(ij 5 +ij +sz 8)
w : m, Ox, dy. m. 0z, '
J J J J J J
Therefore the statement
R . R
. = X
Vc = W

. " : X N
is equivalent to Newton's equations in IR .
Let us decompose this vector identity into components parallel an

perpendicular to M C RN.

(vge) + (v e) = <xf)H Fx)|
We know (III.C. ) that ( v?é)” = Véd in M. Therefore Newton's
equations are equivalent to:
V.CC = (Xi)”
R
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The statement that the motion is constrained to M says that the
second equation must balance. Therefore, the first equation is our
equation of motion. We will have proven our result if we show that

R

(Xw )“ B Xw-’ as defined at the start. As these are both tangent fields

to M, it is enough to show that

R
g((xw)H:Y) - 8(Xw:Y) for Y ¢ T*M.
But
g((xf)H:Y) = h(Xj{,Y) as Ye T.M

= w(Y) by definition of Xi
4"’ f*Y>
<f*w, Y>

g(Xw, Y) by definition of X, QE.D.

We make several comments on the material above.
(1) The equation Ve ¢ = Xw is the "same" as Lagrange's equations.

To see that, take g(-, %-) of both sides. Then

d d
gCXw,jgg-) = w(g;;) = a,,

the generalized force in the jth direction. To analyze the term

L) a °
g(v,¢é,s—), let Z be a vector field extending ¢ .
&

ox.,
J
2 o] 0 1 9
g(VZZ’B_x—) = Z« g(—T,Z) o g(zr[—T ’Z]) '-Z - g(Z,Z)n
j 9q dq dq’

(using the relation of the Theorem III. B. 3),
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S} oT
Claim that this expressionis —d(—T—) - —— . But, forv ¢ M,
dt ] j o *
aq 9q
9 .
T(v)=lg(v »v ). Thus —al' = glv , —), and, as Z = ¢,
o 2% 0o o . o’
9q v, oq
'5; (‘Ql) = Z-g(Z, i) To show that
0y’ aq’
aT 4 0
(2,5 .2) -3 == ez, 2)= - 251 Lez=S 2.
9q 9q’ 9q - 7 ox
Then -
0 0z 0
52 s 2
9q m 9q 9q

Let g be givenby g... Then
9 h k 8z£
g(Z,[—T:Z]) = z gM z T
and

% 2 alz, 7)) = % =2 B 81y 22" )

an Bq‘] k,4
= 1 B k2 k 9z
= E. J 2 2z + 2 gklz 3 .
k,ﬂ 3Cl k,ﬂ 8q
and therefore
9g
3 1 _29 1 kf k £
g{Z,[—T,Z])- E'_J g(Z,Z):_E J z" z
2q 3q k,{ 9q
3T
(- —_j)(z)s
9q
1 n ,l1 o1 1 1 n .k .4
(rbere Tlq vrresl 38 worsli ) = 3 ngl(q seresq ) 8-97)

Thus we have shown that we do indeed have Lagrange's equations here.
(By being more sophisticated, we could probably have done this with less
involvement in the coordinates. But note that our final result involves the
coordinates, so we cannot avoid them entirely. )
(2) Note: Xw does not depend on forces which are perpendicular (relative

to h) to M. These "forces of constraint" may therefore be ignored in
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setting up the equations Vc_ ¢ = Xm for solution. This is the whole
advantage of the method.

(3) If the forces parallel to M are zero, Véé = 0 says that the path

is a "geodesiq", For a single particle moving on a surface (e.g. a
marble moving (without gravity) on a cone) this is particularly reason-
able, as it just says that the acceleration is perpendicular to the surface.
(Recall II1. C, )

(4) Note finally that if we take the inner product of Ve & = Xm with ¢

and apply IIL B. 3 again, we get
s rd opa ’
¢-[3g(e,¢)] = w¢)
which simply says that the rate of change of the kinetic energy

T (= % g(c,¢)) is given by the work-form applied to ¢, as it should be.
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SUPPLEMENT - EULER'S EQUATIONS
By Raphael Zahler
Frequently in classical mechanics it happens that the configuration
space of the dynamical system in question has the structure of a Lie
group. This means that it is a differentiable manifold with an additional
"multiplication" operation related to the structure of the manifold. The
points of the manifold are then thought of as motions of the system; the
product xy stands for the motion resulting from the combined effect of
the motion x followed by the motion y. For example, the group of all
rotations of an asymmetrical three-dimensional body which leaves a
particular point fixed is the familiar Lie group SO(3). The reader may

consult Helgason, Differential Geometry and Symmetric Spaces,

(Academic Press) for a full treatment of the mathematical theory of Lie
groups; here we will briefly outline some important facts. For any fixed
element g of the Lie group G, multiplication on the left by g gives a
map Lg of G into itself called "left translation by g". The induced
map on tangent spaces, .Lg* , maps Te(G) to Tg(G), where e is the
identity element of the group G. In this way the structure of the vector
space Te(G) is closely related to the overall structure of G. Te(G) is
called the Lie algebra of G. There is a function, called the exponential
map, which takes vectors of Te(G) to points of G; if exp X is the
point corresponding to the vector X, then exp(t1 +tZ)X = (exp t1X)(exp tZX);
in particular, exp 0 = e.

Suppose now that the kinetic-energy metric on our Lie group is left-

invariant ° that is,

(X:Y)g = (Lh*X; Lh>:=Y)hg

for all g,he G, X,Y ¢ Tg(G)a (The subscript '"g" in (X,Y)g denotes
that the metric is being applied to tangent vectors at the point g.) It is

then a fact that the geodesics of the metric, which represent the motion
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of the system in time, can be described near e by c(t) = exp X(t),
where X(t) ¢ T,(G), all t. We will investigate the behavior of
these trajectories close to e.

Consider a geodesic exp y(t), and let its tangent vector at time t

be vy(t). Then the kinetic energy as a function of time is

T(t) =‘%(Y.:§)epr = %(Lexp(-'\()*\;’ Lexp( _Y)*Q)e )
or, if we write £(t) = Lexp(-y)*\‘( ,
T(t) = S{E(6), £)t)).

Let us assume that there is no potential energy. Then we will be able
to show that >§ satisfies Euler's equation: é = -B(&, &), where the
function B: Te(G) X Te(G) - Te<G) is defined uniquely by

(X,Y],2) = (B(Z,X),Y) , all Y.

First of all, since everything involved is invariant under left trans-
lation, it will suffice to consider the case vy(0) = 0; any other geodesic
will be a left translation of one of these. Next, it may be proved using

a "Taylor expansion" technique that

Loox# ¥ = ¥ -3 ¥1+ (X[,

where the symbols X and Y on the right-hand side are understood in
terms of a special "canonical® coordinate system {xi, “ 5%y xn} in a
neighborhood of e by which we identify the vectors of the various different
tangent spaces near e. Let us plug this into our formula for the

Lagrangian:
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We now invoke the Euler-Lagrange equations, which must be satisfied
by any geodesic: in terms of the canonical coordinates,

d 8L _ 3L

= = = e r=1,.is.,0
T 1
Writing L = L(t,v,8) = L(t, %, .. x &, . %), we get

L= ;_-(g, g)e =% z gii;{iz , where we assume that the matrix of con-

stants {gij} representing the metric at e has been diagonalized.

Hence dx
aL = r 3 1no'
yh air B ™0 (neglecting the "0" t=rm)
oL 9 1, = 1 5 g
Next . 5— = 7— (3{v,V¥) - (B, ¥),v)).

. ) r
i v) = —_— = . d E =
If we write B(y, V) 2 bi Ty then br’ and the Euler
i
Lagrange equations now imply that Euler's equation is satisfied near

the origin by the trajectories of the dynamical system, when the con-
figuration space happens to form a Lie group with left-invariant metric.
(Note: this derivation is due to Arnold (Comptes Rendues, v.260 (May
31.1965), p. 5668); a derivation independent of Lie-group theory is found
in Loomis and Sternberg, Advanced Calculus (Addison-Wesley), p. 541 ff.)
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Let us apply this to the case of rigid-body motion. Considering
only rotations leaving a point fixed, a moment's reflection shows that
the rotation group SO(3) is actually the configuration space of our
system; just take a fixed reference position of the body and consider
any other position as a rotation from the reference position. The tan-
gent space to the Lie group SO(3) at the origin can be identified with
the vector space of all skew-symmetric three-by-three matrices;
these are usually referred to in physics texts as "infinitesimal
rotations", and this is the Lie algebra we must work with.

Let F(t) be a curve in configuration space; then a particle at a
point p of Euclidean space moves in the trajectory (F(t))(p). A

physically sensible Riemannian metric in this case is the inertia tensor

(A,B) = f m(Ap, Bp)dp where A and B are skew-symmetric matrices.
In general, this is-a left- but not right-invariant metric. In terms of a
basis {e,"; of IR3, we have

i

(A, B) =fm(A(}j re.). B> rie)) dp
3

= z (Ae., Be,) [mr.r. dp
=t v JdJ 1]
3

= z I..(Ae,, Be.).

=1 9t

I. the coordinatized version of the inertia tensor, may be diagonalized

(principal axis theorem); picking an obvious basis EiZ’ E13, E23 of the
Lie algebra gives )
) Ii * IJ, i#j
(Ei.y E .) =

Jou 0 otherwise

It is now possible to substitute in Euler s equation as we derived it above,

to obtain
da
12
i ———— + & - =
& 4 tL) - (I - Tayza,, =0,



-111-

and two similar equations obtained by cyclic permutations of the indices.
This is the form of Euler's equations without potential usually found in
physics texts; it may be used to solve problems like those involving
the spinning top.

A similar situation occurs in the physics of fluid flow. If we have
a doma}n filled with a uniform incompressible ideal fluid, the group of
volume-preserving diffeomorphisms of this domain forms configuration
space, and, in certain conditions, is a Lie group. Euler's equation ,
in the form in which we have derived it, now yields

-

%t(cur]_ ) = cur]_(gx curl g)

where £ is now interpreted as the velocity vector field of the fluid.

This is known as Euler's equation for fluid mechanics.






